
Sparse Arrays for Scientific Python
Proposal for CZI’s Essential Open Source Software for Science program

Stéfan J. van der Walt (Berkeley Institute for Data Science, UC Berkeley)
K. Jarrod Millman (Division of Biostatistics, UC Berkeley)

Ross Barnowski (Berkeley Institute for Data Science, UC Berkeley)
Dan Schult (Department of Mathematics, Colgate)

Proposal Purpose

To improve sparse structures in SciPy so they support array semantics; to deprecate SciPy’s sparse
matrices and numpy.matrix; to assist with sparse array adoption in downstream ecosystem packages.

Words in summary (500 max): 492
Words in work plan (750 max): 440
Words in deliverables (500 max): 207
Words in existing_support (250 max): 230
Words in landscape (250 max): 247
Words in value_biomed (250 max): 244
Words in dei (250 max): 245

Purpose

To improve sparse structures in SciPy so they support array semantics; to deprecate SciPy’s sparse
matrices and numpy.matrix; to assist with sparse array adoption in downstream ecosystem packages.

Summary

Sparse data refers to datasets where a high percentage of the values are zero or empty. This happens when
relationships across dimensions (e.g. rows and columns) don’t exist or are neglected. Sparse datasets
are ubiquitous in modern scientific computing, including network analysis, signal processing, image
processing, machine learning, etc. There exist many sparse data formats which save memory by only
storing non-zero values, yet still allow efficient computation and manipulation.

In the scientific Python OSS ecosystem, scipy.sparse provides 7 sparse matrix data structures for datasets
that are 2D (like a matrix). Their interface mimics the numpy.matrix interface using matrix semantics,
which is fundamentally different from the numpy.ndarray interface which uses array semantics. Semantic
differences mean that matrix objects and array objects are not interchangeable and this can lead to
confusion or silent errors when standard array semantics are used incorrectly with a matrix object. The
NumPy community has a long-standing desire to remove numpy.matrix and related semantics in favor of
the ndarray semantics that have become the de facto standard for data in Python. The major blocker to
this removal is the use of matrix semantics in scipy.sparse. Constructing array semantics interfaces for
sparse data in Python has been discussed for years.

Unlike the universally accepted strided memory model on which ndarray is built, sparse data can be
stored in many formats with varied memory usage and computational efficiency. Performance scales with

1



amount of data and number of dimensions differently across formats. Some formats, such as COOrdinate
(coo), directly generalize to any number of dimensions, whereas others do not. Also, some users need
flexibility to switch between formats while others need strict format control. This makes interface design
critical, involving communication across developers of many libraries throughout the scientific Python
ecosystem. Interface input and facilitation of acceptance from numpy, scipy, and other libraries is critical.
While the long term goal is implementation of an n-dimensional sparse interface with array semantics,
this cannot be expected from a two-year project. We will focus on commonly used cases with 1D to
4D data, using appropriate sparse data structures and on collecting community input and facilitating
community acceptance.

We propose to introduce sparse array data structures that provides array semantics for straightforward
interaction with sparse data. The scope of the project includes the design and implementation of 1D
and 2D sparse array data structures, expanding on the scipy.sparse package. An extension of some
formats to 3D or 4D is also in scope. We will also take a leading role in the community migration of
sparse data applications to this array interface throughout the libraries SciPy, NetworkX, scikit-image
and scikit-learn. Other libraries are likely to follow suit and we will help them as needed. This is a
community effort. The inclusion of sparse arrays in scipy.sparse will remove the last barrier for the
scientific Python community to move to sparse array semantics, officially deprecating numpy.matrix. The
resulting adoption and availability of sparse data tools could be transformative.

Work Plan

The primary focus of this proposal is the extension and refactoring of sparse data structures within
SciPy to fully support NumPy ndarray semantics. scipy.sparse is the fundamental package for
handling sparse data within the scientific Python ecosystem, and is used by various downstream li-
braries, including scikit-image, scikit-learn, and NetworkX. Its lack of an array interface is the last
remaining blocker for the deprecation of numpy.matrix, which has been pending for over 5 years (see:
https://github.com/numpy/numpy/pull/10142).

The changes proposed impact many libraries in the scientific Python ecosystem, and as such community
coordination and implementation of a transition plan will form a large part of the project.

Currently, the prototype scipy.sparse array implementation builds on the older sparse matrix objects.
These assume that all data is two-dimensional, whereas arrays are inherently nested: for example, a
two-dimensional array is a container of one-dimensional arrays. Thus, when working with arrays,
one-dimensional results often arise from slicing or reduction operations. Currently, those results are
returned as dense NumPy arrays. A first step towards more complete array support is the addition of a
one-dimensional sparse container and associated tests.

While implementing one-dimensional sparse arrays, we will work with core developers of SciPy on a
transition plan for moving from the current matrix interface to sparse arrays. Since matrix and array
semantics differ, simply switching from one to the other will break existing code that depends on
scipy.sparse. Considerations in the transition plan include what behaviors to change, and how to
advertise those changes so that developers of downstream code has sufficient chance to respond. It is
likely that, even after implementation, the transition plan may need to be adjusted based on developer
and user feedback.

The transition plan, as well as the open discussions that go into its formulation, will be captured in a design
document, possibly in in an enhancement proposal or a Scientific Python Ecosystem Coordination (SPEC)
document. The last step of the transition plan will be the deprecation of numpy.matrix, appropriately
coordinated with the release of scipy.

2



While developing the transition plan, we will help core ecosystem packages to adopt the new
scipy.sparse array interface. Doing so will provide feedback on common use-cases and inform the
design of the transition plan. scikit-learn, scikit-image, and networkx are explicitly listed in this
proposal as prominent consumers of scipy.sparse with large user bases; however, our aim is to assist
with adoption more broadly ecosystem-wide.

The final component of the work plan is to study the feasibility of extending scipy.sparse arrays to
higher-dimensional data. The full design and implementation of an n-dimensional sparse data structure
is beyond the scope of this proposal.

Deliverables

SciPy typically has two feature releases per year around December and June. The proposed work will
be done with this release schedule in mind, especially during the first year of the project when many of
the additions to scipy are expected to occur. Given that downstream libraries cannot take advantage of
any new scipy.sparse features until they have been released, explicit work on downstream projects is
expected to be more concentrated in year 2.

Year 1

• One-dimensional sparse data structure added to scipy.sparse.
• Add support for sparse array indexing.
• Formalized transition plan for migrating the scipy.sparse default interface from matrices to arrays.

– Note: new scipy.sparse array features are expected to be made available to users within the
first two releases of scipy in year 1. The full transition from matrix to array semantics as the
scipy.sparse default will likely be a longer process.

Year 2

• Formalized plan for the removal of numpy.matrix (likely via a NumPy Enhancement Proposal).
• Incremental adoption of scipy.sparse array features in downstream libraries, depending on version

requirements in individual libraries.
• Implementation of transition plan to remove matrix objects within scipy.sparse.

– Note: it is likely that deprecation periods will extend beyond the timeframe of this project.
• Preliminary design/test suite for support of higher-dimensional sparse arrays.

Existing support

This proposal involves working specifically on the scipy.sparse subpackage within the SciPy package,
related cleanup in the numpy.matrix subpackage of the NumPy package, and aiding in the adoption
of the updated sparse interface of downstream packages like NetworkX, scikit-learn, and scikit-image.
(Note: these five projects were listed explicitly due to their central location in the ecosystem and the fact
that the proposal limits the number of listed projects to 5. However, aiding sparse array migration for any
scientific Python project in the ecosystem is considered in scope from our perspective.)

Each of these packages has received some form of funded support in the recent past, but only NetworkX
has previous funding related to sparse data structures. NetworkX is receiving ongoing funding from Cycle
4 of the CZI EOSS program (EOSS4-0000000138) which included goals of more tightly integrating with
scientific Python, including scipy.sparse, and an investigation of backend-neutral graph API, which

3



involves scipy.sparse data structures. In support of this work, NetworkX has been an early adopter of
changes to the scipy.sparse interface. This benefits the proposed work in scipy.sparse in several ways:

• Network analysis often involves sparse data, and applications in NetworkX provide diverse exam-
ples to aid in the design and testing of sparse arrays.

• By setting the minimum required version of SciPy to the latest stable release, NetworkX contributes
to greater adoption of the new scipy.sparse interface among downstream users.

Landscape

scipy.sparse is the standard scientific Python toolkit for sparse data. Its main limitation is that the
fundamental data structures implement matrix semantics, meaning that all data is inherently 2D and not
interoperable with NumPy.ndarray semantics. We recently took first steps to address these limitations by
introducing sparse arrays to scipy.sparse. We also converted NetworkX to that interface. The goal of
this proposal is to support and solidify this effort. We are well positioned to work with scipy.sparse, SciPy
more generally, NumPy, NetworkX, scikit-image and scikit-learn. We have spoken with core developers
to ensure our visions align.

The other main library for sparse array analysis in Python is PyData’s sparse package which provides
n-dimensional sparse data structures that support array semantics appropriate for Numba compiled
code. PyData is actively maintained and used by several hundred packages (according to GitHub). But
the data structures are specialized and not possible to incorporate in scipy.sparse, The emphasis is on
inter-operability with specialized computational array back-ends. Thus, PyData-sparse does not compete
with scipy.sparse. The libraries are mutually beneficial, providing effective general data manipulation
in scipy-sparse along with speed-up for special cases in PyData-sparse, analogous to the relationship
between e.g. NumPy and JAX. Our project should improve adoption of array-based analyses for sparse
data. Users can then move appropriate special cases to PyData-sparse. PyData-sparse represents a parallel
effort to scipy.sparse with separate goals and design principles.

Value to Biomedical

A flexible, performant n-dimensional sparse array is a foundational tool with large impact potential across
many scientific computing domains. Array semantics (indexing, reductions, broadcasting, vectorization)
are already foundational components of data analysis workflows. A sparse data structure that implements
array semantics could be a “drop-in” replacement in many machine-learning workflows where non-sparse
code exists but needs to be applied to sparse datasets. Allowing sparse array operations using code
developed for traditional array operations reduces memory and CPU constraints on data analysis and
machine-learning algorithms. In addition to these foundational considerations, several direct biomedical
applications involve sparse data. For example, biomedical imaging involves volumetric image spaces and
time-series analysis (3D or 4D) with sparse data. Collections of data across patients or imaging devices
can increase the dimension further. Image segmentation involves extraction of image features. Sparse
image representation exploits the idea that similar features can be identified using sparse representations.
Sparsity constraints allow identification of such features. Sparse data representations have also been
applied to shape prior modeling, nonrigid registration and functional connectivity modeling. Clinical
data is often sparse because most medical tests and procedures do not apply to most patients. Clustering
patients and providers enables machine-learning techniques to identify likely conditions and treatments.
The ability to collect large datasets with many variables from varied sources often results in sparse data.
Machine-learning techniques are more powerful when they take advantage of this sparsity. Sparse data
structures using effective semantics are crucial parts of this workflow.

4

https://github.com/scipy/scipy/pull/14822
https://github.com/networkx/networkx/pull/5139
https://sparse.pydata.org/en/stable/index.html


DEI

We believe that healthy communities are built when everyone’s voice is heard, when their perspective is
valued, and when their work is recognized. It is also evident that better technical and social solutions can
be found through wide participation.

Common to all projects in this proposal is an explicit dedication both to onboarding contributors who
are new to open source development, and to integrating existing contributors more tightly into project
communities.

One mechanism used to implement these goals is mentored projects. Each of the participants listed in this
proposal has served as a mentor: either as part of an established program (e.g. GSoC, GSoD, Outreachy) or
separately, often supporting contributors from underrepresented communities. For example, NetworkX
is currently mentoring a women through Outreachy and the PI has hired a women to work with us this
summer to contribute to both the Scientific Python project and NetworkX.

The Scientific Python project team (comprising members of this proposal) has also undertaken to generate
video content in an effort to reach potential contributors who may not yet be comfortable interacting
through traditional OSS development channels like GitHub or mailing lists. These outreach videos include
content related to getting started on projects within the scientific Python ecosystem, and interviews with
mostly newer maintainers to highlight different ways people can become contributors and maintainers.
We’ve also been successful with recruiting a diverse group of people to participate on the various teams
associated with the project (e.g., https://scientific-python.org/about/#people).

5


	Purpose
	Summary
	Work Plan
	Deliverables
	Year 1
	Year 2

	Existing support
	Landscape
	Value to Biomedical
	DEI

